Дискретная математика

Швецова Анна

18 апреля 2017 г.

Содержание

1.	Эле	ментарная комбинаторика	1
	1.1	Принцип Дирихле	1
	1.2	Основные правила перечислительной комбинаторики	1
	1.3	Подсчет k -сочетаний из n элементов. Биномиальные коэффициенты	3
	1.4	k-пересановки из n элементов. Урновые схемы и схемы раскладки предметов по ящикам	4
	1.5	Подсчет количества отображений конечных множеств. Числа Стирлинга второго	
		рода	6
2.	Рек	уррентные соотношения	8
	2.1	Однородные линейные уравнения	8
	2.2	Неоднородные линейные уравнения	9
3.	Teol	рия графов	10
	3.1	Основные понятия и определения теории графов	10
	3.2	Маршруты, пути, циклы в графе. Связные графы и орграфы	12
	3.3	Подграф графа G . Основные операции над графами	14
	3.4	Изоморфизм и автоморфизм графов	15
	3.5	Основные свойства деревьев	16
	3.6	Перечисление деревьев. Формула Cayley	18
	3.7	Подсчет остовных деревьев в графе. Матричная теоре- ма о деревьях	18

1. Элементарная комбинаторика

1.1. Принцип Дирихле

Утверждение 1.1.1 (Принцип Дирихле).

Если в n ящиков положить k>n предметов, то хотя бы в одном ящике будут лежать по крайней мере два предмета.

Доказательство.

Предположим, что утверждение неверно, то есть в каждом ящике находится не более одного предмета. Обозначим через m количество ящиков, в котором ничего не лежит. Очевидно, что $m \geqslant 0$. Тогда ровно по одному предмету лежит в (n-m) ящиках. Это означает, собственно, что общее количество предметов равно $n-m \leqslant n < k$, что противоречит условию нашего утверждения.

Утверждение 1.1.2 (Обобщенный принцип Дирихле).

Пусть у нас имеются k предметов, которые мы должны распределить по n < k ящикам. Тогда существует по крайней мере один ящик, в котором содержится не менее чем $\lceil \frac{k}{n} \rceil$ предметов, где $\lceil \frac{k}{n} \rceil$ – ближайшее целое число, большее или равное $\frac{k}{n}$

1.2. Основные правила перечислительной комбинаторики

Определение 1.2.1. Множеством $X = \{x_1, x_2, \dots, x_n\}$ называется совокупность различимых объектов x_1, x_2, \dots, x_n , объединенных по некоторому признаку.

Определение **1.2.2.** Мощностью |X| множества X называется количество элементов в нем. Как правило, мы будем рассматривать конечные множества, в которых $|X| = n, n \in \mathbb{N}$, и называть их n-множествами.

Основные операции над множествами – это объединение, пересечение, разность и симметрическая разность двух множеств. В случае, если множество A является подмножеством некоторого более широкого множества X, удобно также рассматривать операцию дополнения A' := X/A множества A.

Утверждение 1.2.1 (Правило де Моргана).

$$A' \cap B' = (A \cup B),$$
 $A' \cup B' = (A \cap B)$

Доказательство. Графическое. С помощью диаграмм Эйлера-Венна.

Определение 1.2.3. Семейство множеств $\{X_1, X_2, \dots, X_k\}$ называется покрытием множества X, если их объединение дает нам все множество X:

$$X_1 \cup X_2 \cup \ldots \cup X_k = X$$

Определение 1.2.4. Говорят, что семейство множеств $\{X_1, X_2, \dots, X_k\}$ образует разбиение множества X, если

- 1. $X_i \neq \emptyset$
- 2. $X_i \cap X_j = \emptyset \ \forall i \neq j$

3.
$$X_1 \cup X_2 \cup \ldots \cup X_k = X$$

Элементы X_i этого семейства называются блоками разбиения.

Если по каким-то причинам оказывается важным порядок следования блоков, то говорят об упорядоченном разбиении (X_1, X_2, \ldots, X_k) множества X.

Определение 1.2.5. Разделением множества X называется упорядоченная последовательность (X_1, X_2, \ldots, X_k) возможно пустых, попарно непересекающихся множеств, объединение которых дает все множество X.

Определение 1.2.6. Декартовым произведением множеств A и B называется множество таких упорядоченных пар: $A \times B := \{(a,b) : a \in A, b \in B\}.$

Определение 1.2.7. Декартовым произведением множеств X_1, X_2, \ldots, X_k называется множество: $X_1 \times X_2 \times \ldots \times X_k := \{(x_1, x_2, \ldots, x_k) : x_i \in X_i\}$. Всевозможных упорядоченных k-элементных последовательностей вида (x_1, x_2, \ldots, x_k) .

Определение 1.2.8. k-мультимножеством над n-элементным множеством X называется пара (X, φ) , где $\varphi : X \to \mathbb{Z}_+$ есть функция, сопоставляющая любому элементу $x \in X$ количество $\varphi(x)$ его вхождений в k-мультимножество.

Любую функцию φ такого рода можно определить с помощью множества упорядоченных пар $\{(x,\varphi(x))\}.$

Определение 1.2.9.

- 1. k-сочетанием без повторений называется любое k-элементное подмножество n-элементного множества;
- $2.\ k$ -сочетанием с повторениями называется любое k-мультимножество над n-множеством;
- 3. k-перестановкой без повторений называется упорядоченное k-подмножество n-элемент ного множества;
- 4. k-перестановкой с повторениями называется любой элемент декартовой степени $X^{(k)}$

Утверждение 1.2.2 (Правило суммы).

Если некоторый объект из множества A можно выбрать k способами, и, вне зависимости от выбора этого объекта, можно n способами выбрать некоторый элемент множества B, то выбор объекта из множества A или из множества B можно осуществить k+n способами.

На языке теории множеств: $A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$ В более общем случае, рассматривая произвольное разбиение множества X на блоки, имеем равенство вида $|X| = |X_1| + |X_2| + \ldots + |X_k|$.

Утверждение 1.2.3 (Правило произведения).

Под правилом произведения в комбинаторике понимается равенство: $|X_1 \times X_2 \times \ldots \times X_k| = |X_1| \cdot |X_2| \cdot \ldots \cdot |X_k|$

Утверждение 1.2.4 (Обобщенное правило суммы). Рассмотрим два конечных множества A и B , пересечение которых может быть и непусто. Тогда количество элементов в объединении этих множеств, очевидно, равно $|A \cup B| = |A| + |B| - |A \cap B|$.

Утверждение 1.2.5 (Правило включения исключений).

Предположим теперь, что A и B являются подмножествами некоторого более широкого множества X . В этом случае у множества $A\subset X$ и множества $B\subset X$ имеются дополнения к ним – множества A' и B' .

Рассмотрим теперь пересечение $A'\cap B'$ дополнений множеств A и B . Согласно одной из теорем де Моргана, $A'\cap B'=(A\cup B)'$. Следовательно, количество элементов в этом пересечении с учетом равенства и обобщенного правила суммы можно сосчитать так: $|A'\cap B'|=|(A\cup B)'|=|X|-|A\cup B|=|X|-|A|-|B|+|A\cap B|$. Равенство $|A'\cap B'|=|X|-|A|-|B|+|A\cap B|$ и называется в комбинаторике принципом включения-исключения.

Легко заметить, что оно легко обобщается и на большие количества множеств.

1.3. Подсчет k-сочетаний из n элементов. Биномиальные коэффициенты

Начнем с подсчета количества k -сочетаний из n элементов без повторений.

Обычно на вопрос, чему равны биномиальные коэффициенты, вспоминают формулу: $\frac{n!}{k!(n-k)!}$

Введем Σ_k — множество всех k-элементных подмножеств n-множества X. Разобьем теперь множество Σ_k на 2 блока. Блок $\Sigma_k^{(1)}$, все жлементы которого содержат x_1 и $\Sigma_k^{(2)}$, которые не содержат. Получили непустые непересекающиеся множества, разбиение Σ_k . По правилу суммы,

$$\binom{n}{k} = |\Sigma_k| = |\Sigma_k^{(1)}| + |\Sigma_k^{(2)}| = \binom{n-1}{k-1} + \binom{n-1}{k}, \quad k \geqslant 1, n \geqslant 1$$

Скажем ещё про начальные и конечные значения. $\binom{n}{k} = 0$ при k > n; $\binom{n}{0} = 1, \forall n \geqslant 0$

Можно записать полученные коэффициенты в виде треугольника Паскаля. Также полученные числа – количество путей на координатной плоскости из точки (0,0) в точку (n,k), если можно перемещаться либо вниз, либо вправо-вниз.

Утверждение 1.3.1 (Суммирование биномиальных коэффициентов по вернему индексу.).

$$\binom{k}{k} + \binom{k+1}{k} + \ldots + \binom{n}{k} = \binom{n+1}{k+1}$$

Формальное. Заметим, что $\sum_{m=0}^{n} = \sum_{m=k}^{n} = \binom{n+1}{k+1}$ Нам известно рекуррентное соотношение:

$$\binom{m+1}{k+1} = \binom{m}{k} + \binom{m}{k+1} \Rightarrow \binom{m}{k} = \binom{m+1}{k+1} - \binom{m}{k+1}$$

Просуммируем теперь эти слагаемые. Получим:

$$\sum_{m=k}^{n} {m \choose k} = {n+1 \choose k+1} + \sum_{m=k}^{n-1} {m+1 \choose k+1} - \sum_{m=k}^{n} {m \choose k+1} =$$

$${n+1 \choose k+1} + \sum_{m=k}^{n-1} {m+1 \choose k+1} - \sum_{m=k+1}^{n} {m \choose k+1} =$$

$${n+1 \choose k+1} + \sum_{m=k+1}^{n} {m \choose k+1} - \sum_{m=k}^{n} {m \choose k+1} = {n+1 \choose k+1}$$

Комбинаторное. Переберем последний предполагаемо взятый элемент (если мы берем их в порядке возрастания номеров). Каждый раз будем получать $\binom{m-1}{k}$ в сумму, где m – номер последнего взятого элемента.

Автор: Швецова Анна

Теорема 1.3.2 (Тождество Вандермонта).

$$\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \cdot \binom{m}{k-i}$$

Доказательство. Взять k элементов из объединения непересекающихся множеств – всё равно, что перебрать, сколько из какого множества было взято элементов и посчитать по отдельности.

Oпределение **1.3.1.** Double counting или правило подсчета двумя способами. Основная идея такого рода рассуждений состоит в следующем: если две формулы подсчитывают количество одних и тех же элементов, то эти формулы равны.

Утверждение 1.3.3. Полученные числа – коэффициенты в биноме Ньютона

Доказательство. Количество способов получить $x^k y^{n-k}$ — из n скобочек произведения нам нужно выбрать ровно k, из которых будет взят x и оставшиеся n-k, откуда мы возьмем y, то есть k-подмножество n-множества.

Замечание. Оттуда число всех подмножеств: $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ по биному Ньютона.

Замечание. $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0, n > 0$ по биному Ньютона. Следствием этого равенства является тот факт, что количество четных подмножеств любого множества, отличного от пустого, равняется количеству его нечетных подмножеств. (Получится, если расписать сумму и перенести по разные стороны от =)

Утверждение 1.3.4 (Принцип биекции).

Пусть есть биекциия между множествами X и Y. Тогда эти множества равномощны

Замечание. Между всеми подмножествами n-множества и строками из символов $\{0,1\}$ длины n существует биекция.

Можно продифференцировать по $x \sum_{k=0}^n \binom{n}{k} x^k y^{k-n} = (x+y)^n$ и получить $\sum_{k=0}^n k \binom{n}{k} = n2^n$ при x=y=1.

Научимся теперь выводить k-сочетания с повторениями.

Рассмотрим такое отсортированное k-мультимножество $\{a_1,a_2,\ldots,a_k\},\ a_i\in[1,n]$. Тогда $1\leqslant a_1\leqslant a_2\leqslant\ldots\leqslant a_k\leqslant n$. Сделаем все знаки строгими, прибавив к a_2 единицу, к a_3 двойку, ... к a_k k-1. $1\leqslant a_1< a_2+1<\ldots< a_k+k-1\leqslant n+k-1$. Получили некоторое k-подмножество из n+k-1-элементного множества. Заметим, что мы построили некоторую биекцию. Значит $\binom{n+k-1}{n+k}=\binom{n}{k}$

1.4. k-пересановки из n элементов. Урновые схемы и схемы раскладки предметов по ящикам.

Определение 1.4.1. k-перестановкой из n элементов называется упорядоченный набор элементов, в котором все элементы принадлежат одному и тому же n-элементному множеству. Элементы в наборе могут как повторяться, так и не повторяться. В первом случае говорят о k-перестановках с повторениями, во втором о k-перестановках без повторений.

Утверждение 1.4.1.

Количество k-перестановок с повторениями из n элементов равно n^k . (По правилу произведения)

Утверждение 1.4.2.

Количество P(n,k) k-перестановок из n элементов без повторений равно $P(n,k) = n \cdot (n-1) \cdot \dots \cdot (n-k+1) =: (n)_k$

Действительно, на первое место можно поставить n элементов, на второе -n-1 и т.д.

Если k=n, то такая перестановка без повторений называется просто перестановкой n-элементного множества. P(n)=n!, P(0)=0!=1

Любую k-перестановку из n элементов без повторений можно рассматривать и как упорядоченное k-подмножество n-множества.

Тогда
$$(n)_k = k! \cdot \binom{n}{k} \Rightarrow \binom{n}{k} = \frac{(n)_k}{k!}$$
.

Получим формальную формулу для биномиальных коэффициентов:

$$\begin{pmatrix} q \\ k \end{pmatrix} := \begin{cases} \frac{q(q-1)(q-2)\dots(q-k+1)}{k!} =: \frac{(q)_k}{k!} & k \in \mathbb{N} \\ 1 & k = 0 \\ 0 & k < 0 \end{cases}$$

Определение 1.4.2. Функцию $(q)_k$ называют убывающей факториальной степенью . Наряду с убывающей можно ввести и так называемую возрастающую факториальную степень $q^{(k)} = q(q+1)\dots(q+k-1)$

В частности,
$$\binom{n}{k} = \frac{n^{(k)}}{k!}$$

Сведём все задачи к урновой схеме: есть урна, в которой лежат предметы. Нужно понять, сколько существует способов вытащить из неё k предметов. При этом Мы можем различать или не различать порядок вытаскивания, возвращать или не возвращать предметы в урну. Тогда:

- Возвращаем, порядок не имеет значения: $\binom{n}{k}$
- Возвращаем, порядок важен: n^k
- Не возвращаем, порядок важен: $(n)_k$
- Не возвращаем, порядок не важен: $\binom{n}{k}$

Пусть теперь задача звучит иначе. У нас есть n различимых ящиков и k предметов, различимых или нет.

- Количество способов разложить k различимых предметов в n ящиков: n^k (по правилу произведения)
- Теперь в каждый ящик можно положить не более одного предмета: $(n)_k$
- Разложить предметы любым образом, если они неразличимы: $\binom{n}{k}$
- Разложить предметы, не более одного в каждый ящик, если они неразличимы: $\binom{n}{k}$

Задача о разбиении: сколькими способами можно представить натуральное число k в виде суммы n неотрицательных слагаемых, если порядок слагаемых имеет значение? $-\binom{n}{k}$ (Равносильно разбрасыванию k неразличимых предметов по n различимым ящикам)

Если слагаемые не может быть больше единицы, это равносильно разбрасыванию неразличимых предметов по различимым ящикам с соответствующим ограничением. То есть $\binom{k}{n}$

1.5. Подсчет количества отображений конечных множеств. Числа Стирлинга второго рода

Определение 1.5.1. Пусть X, Y пара конечных множеств. Отображением f из X в Y называется правило, согласно которому любому элементу $x \in X$ ставится в соответствие единственный элемент

Определение 1.5.2. Отображение называется инъективным, если $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Определение 1.5.3. Отображение называется сюръективным, если $\forall y \in Y \exists x \in X : f(x) = y$

Комбинаторная интерпретация сюръективного отображения такова: это есть некоторая раскладка n различимых предметов по k различимым ящикам при условии, что в каждом ящике находится хотя бы один предмет.

Определение 1.5.4. Отображение называется биективным, если $\forall y \in Y \exists ! x \in X : f(x) = y$

 $\hat{S}(n,k)$ – количество сюръективных отображений n-элементного множества в k-элементное.

Чтобы любое отображение сделать сюръективным, отбросив вершины множества образа, для которых нет прообраза.

Разобъем множество отображений на блоки по количеству элементов в образе.

Тогда т.к. всего отображений k^n , то $k^n = \sum_{i=0}^k \binom{k}{i} \hat{S}(n,i) = k^n = \sum_{i=0}^n \binom{k}{i} \hat{S}(n,i)$

Утверждение 1.5.1 (Формула обращения).

Пусть f и g – числовые последовательности, для которых справедливо. $f_k = \sum_{i=0}^k \binom{k}{i} g_i$. Тогда верно также и $g_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f_i$

Тогда по формуле обращения $\hat{S}(n,k) = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} \cdot i^n$

Заметим, что мы только что получили число разделений множества из n элементов на k упорядоченных блоков.

Теперь хотим разделение такое, что в первом блоке содержится a_1 элементов, во втором – a_2, \dots и $\sum_{i=1}^k a_i = n, a_i \geqslant 0.$

Утверждение 1.5.2. Количество таких разделений равно

$$P(n; a_1, a_2, \dots, a_k) \binom{n}{a_1} \binom{n - a_1}{a_2} \dots \binom{n - a_1 - a_2 \dots - a_{k-1}}{a_k} = \frac{n!}{a_1! a_2! \dots a_k!}$$

Это равносильно тому, что мы выберем первые a_1 элементов и положим их в первый ящик, затем a_2 элемента и положим их во второй ящик... Получившееся следует из правила произведения.

Следствие.

$$k^{n} = \sum_{a_{1} + a_{2} + \dots + a_{k} = n, a \geqslant 0} \frac{n!}{a_{1}! a_{2}! \dots a_{k}!}$$

Следствие.

$$\hat{S}(n,k) = \sum_{a_1 + a_2 + \dots + a_k = n, a > 0} \frac{n!}{a_1! a_2! \dots a_k!}$$

Определение 1.5.5. $P(n; a_1, a_2, ..., a_k)$ ещё называю перестановки n-множества с повторениями. Пусть у нас есть a_i объектов i-го типа. Тогда их можно расставить n! способами, а затем

перестать различать между собой объекты каждого типа. По правилу произведения получим формулу $\frac{n!}{a_1! - a_2!}$

Заметим также, что $P(n;k,n-k) = \frac{n!}{k!(n-k)!} = \binom{n}{k}$

Замечание. Метод перегородок позволяет ещё по-другому считать количество k-мультимножеств из n-множеств. Это всё равно, что расставить n-1 перегородку между k объектами. $\binom{n}{k} = P(n+k-1;n-1) = \binom{n+k-1}{k}$

Определение 1.5.6. Пусть S(n,k) – количество неупорядоченных разбиений n-множества на k блоков. Тогда понятно, что $\hat{S}(n,k)=k!S(n,k)$. Отсюда $S(n,k)=\frac{1}{k!}\sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n=\frac{1}{k!}\sum_{a_1+a_2+\ldots+a_k=n,a>0}^{n!}\frac{n!}{a_1!a_2!\ldots a_k!}$ Числа S(n,k) называются числами Стирлинга второго рода.

Свойства.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), k \in [1,n]$$

В первом случае у нас есть одноэлементное множество из x_n , во втором слагаемом этот элемент лежит в одном из прочих k. S(0,0) = 1, $S(n,0) = 0 \forall n > 0$; S(n,k) = 0, k > n

Числа Стирлинга также удобно представлять на плоскости. S(n,k) – число путей, ведущих из точки (0,0) в точку (n,k), если на i-й вертикали все ребра i-кратные, а диагональные ребра всегда единички.

А ещё мы знаем, что $k^n = \sum_{i=0}^k \binom{k}{i} i! S(n,i) = \sum_{i=0}^k (k)_i S(n,i)$. Более того, формула $\sum_{i=0}^n (k)_i S(n,i)$ справедлива даже для комплексных k.

Замечание. С точки зрения ящиков, S(n,k) – количество способов разложить n различимых предметов по k неразличимым ящикам.

Определение 1.5.7. B(n,k) – количество различных раскладок n различимых предметов по k неразличимым ящикам. В ящике может не быть предметов. $B(n,k) = \sum_{i=1}^k S(n,i)$

В случае $k = n \ B(n)$ называют числами Белла.

Покажем, что $B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$ Рассмотрим все элементы, находящиеся в одном множестве с n+1. Если их n-i, то выбрать их можно $\binom{n}{i}$ способами. Оставшиеся числа можно раскидать B(i) способами. Просуммируем по всем i. Получим, что нужно.

2. Рекуррентные соотношения

2.1. Однородные линейные уравнения

Определение 2.1.1. Пусть есть числовая последовательность $a_0, a_1 \dots$ Если для любого n+m a_{n+m} является функцией от m предыдущих членов последовательности $(a_{n+m} = f_n(a_n, a_n + 1, \dots, a_{n+m-1}))$, то такая последовательность называется рекуррентной, а соотношение — рекуррентным соотношением m-го порядка.

Если функция f линейна, то соотношение также называется линейным.

$$a_{n+m} = b_1(n)a_{n+m-1} + b_2(n)a_{n+m-2} + \dots + b_m(n)a_n + u(n)$$

Если u(n) = 0, то оно называется однородным, иначе неоднородным.

Рассмотрим линейное однородное рекуррентное соотношение с постоянными коэффициентами.

$$a_{n+m} = b_1 a_{n+m-1} + b_2 a_{n+m-2} + \ldots + b_m a_n$$

Задать начальные условия для соотношения – определить a_0, a_1, \dots, a_{m-1}

Решить соотношение – значит найти явную (замкнутую) формулу для *n*-го члена.

Решим соотношение первого порядка. $a_{n+1}=b_1a_n, a_0=c$. Пусть знаем, что решение имеет степенной вид. Пусть $a_n=r^n$. Тогда $r^{n+1}=b_1r^n$. Тогда $r=b_1$. Тогда $a_0=b_1^0=1$. Получили частное решение при $a_0=1$. Общее решение достигается домножением на a_0 . Итого $a_n=r^na_0$. Теперь это верно для любого a_0 .

Будем предполагать, что и для прочих порядков решение имеет степенной характер. Например, для второй степени получим уравнение $r^{n+2} = b_1 r^{n+1} + b_2 r^n$. Получим уравнение $r^2 = b_1 r + b_2$. Оно называется характеристическим уравнением для рекуррентного соотношения.

Пусть это уравнение имеет 2 различных корня r_1 и r_2 . Тогда покажем, что $a_n=c_1r_1^n+c_2r_2^n$ при некоторых c_1 и c_2 – общее решение. Проверим, что соотношение удовлетворяет рекуррентному соотношению. $c_1r_1^{n+2}+c_2r_2^{n+2}=b_1c_1r_1^{n+1}+b_1c_2r_2^{n+1}+b_2c_1r_1^n+b_2c_2r_2^n \Leftrightarrow c_1r_1^n(r_1^2-b_1r_1-b_2)+c_2r_2^n(r_2^2-b_1r_2-b_2)=0$. (Т.к. r_1 и r_2 корни, то в скобках нули)

Покажем, что это действительно общее решение.

$$a_0 = c_1 r_1^0 + c_2 r_2^0 = c_1 + c_2, a_1 = c_1 r_1^1 + c_2 r_2^1 = c_1 r_1 + c_2 r_2$$

Эта система имеет единственное решение, когда определитель ненулевой. $det = r_1 * 1 - r_2 * 1 \neq 0$

Пусть теперь корень у характеристического уравнения один – p. Покажем, что общее решение имеет вид $a_n = c_1 p^n + c_2 n p^n$. Уже знаем, что p^n – частное решение. Поймем, что np^n – тоже решение.

$$(n+2)p^{n+2} = b_1(n+1)p^{n+1} + b_2np^n \Rightarrow n(p^2 - b_1p - b_2) + p(1p - b_1) = 0$$

Первая скобка 0 т.к. корень. Вторая – т.к. $p=\frac{b_1\pm 0}{2}$ (из решения квадратного уравнения).

Получим систему линейных уравнений.

$$c_1 = a_0, p(c_1 + c_2) = a_1$$

Она имеет решения при любых a_0, a_1 и $p \neq 0$. Если p = 0, то $b_1 = b_2 = 0$ и при n > 1, $a_n = 0$.

Пусть теперь корни нашего уравнения комплексные (и сопряженные). $r_1 = x + iy = pe^{iv}, r_2 = x - iy = pe^{-iv}, p, v \neq 0$

Покажем, что $a_n = c_1 p^n \cos(nv) + c_2 p^n \sin(nv)$. Рассуждения те же. Всё ещё $a_n = q_1 r_1^n + q_2 r_2^n$. Всё ещё имеем систему уравнений.

$$a_0 = q_1 + q_2$$
, $a_1 = q_1 p e^{iv} + q_2 p e^{-iv} = p(q_1 + q_2) \cos v + pi(q_1 - q_2) \sin v$

Скажем, что $c_1 = q_1 + q_2$ и $c_2 = i(q_1 - q_2)$. Т.к. левое слагаемое было вещественным, то правое тоже вещественное, значит и c_2 – вещественное число.

Можно представить решение ещё в одном виде: $a_n = q_1 r_1^n + q_2 r_2^n = q_1 p^n e^{ivn} + q_2 p^n e^{-ivn} = p^n (q_1 + q_2) \cos(vn) + p^n i (q_1 - q_2) \sin(vn) = p^n c_1 \cos(vn) + p^n c_2 \sin(vn)$

Полученное решение легко обобщается. Так, если у нас есть рекуррентное соотношение порядка m, то выпишем линейное соотношение на него, разложим на множители характеристический многочлен. Тогда, если у нас будет некоторый корень t порядка i (многочлен делится на $(x-t)^i$), то он даст нам в сумму следующие слагаемые: $c_j t^n + c_{j+1} n t^n + \ldots + c_{i+j-1} n^{i-1} t^n$. Далее получим систему на m линейных уравнений, из которых найдем коэффициенты.

2.2. Неоднородные линейные уравнения

Рассмотрим рекурренту $a_{n+1} = b_1 a_n + u$. Расписав его, поймем, что $a_n = b_1^n a_0 + (b_1^{n-1} + b_1^{n-2} \dots + b_1 + 1)u$.

Теперь пусть
$$b_1 \neq 1$$
. Тогда $a_n = b_1^n a_0 + \frac{b_1^n - 1}{b_1 - 1} u = (a_0 - \frac{u}{1 - b_1}) b_1^n + \frac{u}{1 - b_1}$

Если же $b_1 = 1$, то $a_n = a_0 + nu$.

На самом деле заметим, что в обоих случаях $a_n = c_1 r^n + q_n$, где $c_1 r^n$ – решение соответствующего однородного уравнения, а q_n – частное решение неоднородного.

Теорема 2.2.1.

Любое решение рекуррентного соотношения имеет вид $a_n=p_n+q_n$, где p_n – общее решение однородного, а q_n – частное решение неоднородного.

Доказательство. Возьмем ещё одно решение. Вычтем одно из другого. Функция u(n) сократится, останется частное решение однородного, которое входит в класс общих решений.

Находить решение однородного уравнения мы умеем, научимся определять вид решения частного. Предположим, что решение неоднородности имеет вид $u(n)=(d_0+d_1n+\ldots+d_ln^l)r^n=:$ $P_l(n)r^n$. Тогда частное решение исходного неоднородного уравнения будем искать в виде $(c_0+c_1n+\ldots+c_ln^l)n^qr^n$, где q=0, если $r\neq r_j$ (не равен корням характеристического уравнения) и равно кратности корня r_j , если $r=r_j$

Если наша неоднородность представляет собой сумму таких неоднородностей, то её частное решение также можно рассматривать, как сумму их частных решений.

«Читатели, хорошо знакомые с математическим анализом, уже, видимо, заметили, насколько похожи методы решения линейных рекуррентных соотношений и методы решения линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами.» Ага, да, конечно, до свидания. Объясните мне это кто-нибудь, пожалуйста.

3. Теория графов

3.1. Основные понятия и определения теории графов

Определение 3.1.1. Неориентированным графом G называется тройка G = (V, E, I), состоящая из конечного множества вершин V(G) (напр. 1, 2, 3 ...), конечного множества ребер E(G) (напр. a, b, c ...), а также отображения $I : E \to V_2$, сопоставляющего каждому ребру неопорядоченную пару вершин $\{x,y\} \in V_2$, которую этот граф соединяет.

Определение 3.1.2. Вершины x, y называются концевыми вершинами ребра $e \in E$. При этом говорят, что ребро e инцидентно своим концам.

Ребро, соответствующее паре $\{x,x\}$ называется петлей. Ребра, соединяющие одну и ту же пару вершин называются мультиребрами. Если пара вершин соединена лишь одним ребром, такое ребро называют простым.

Определение **3.1.3**. Степенью (валентностью) вершины называется число полуребер, входящих в неё. (Количество ребер, инцдентных с ней, но петля 2 раза)

Рассказать, что такое double counting.

$$\sum_{j=1}^{n} a_j = c = \sum_{k=1}^{m} b_k$$

Рассказали.

Полуребро – половина ребра. Каждая ребро состоит из двух полурёбер (!!!)

Теорема 3.1.1.

В неорграфе G сумма степеней всех вершин равна удвоенному числу ребер.

Доказательство. Любое ребро даёт вклад 2 в сумму степеней вершин.

Если использовать double counting, то можно сказать, что с одной стороны мы считаем число полеребер т.к. каждое полуребро принадлежит одной вершине, а с другой считать сумму степеней вершин.

Заметим, что это то же самое, что суммировать матрицу инцидентности отдельно по строкам и столбцам. \Box

Следствие.

Количество вершин в графе, имеющих нечетную степень, четно

Определение **3.1.4.** Граф простой, если он не содержит петель и мультиребер. Непростой граф – мультиграф.

Для описания простого графа достаточно задать множество его вершин и множество его ребер (неупорядоченных пар вершин).

Теперь, любой простой граф $G\subseteq V^{(2)}$ — подмножество множества всех двухэлементных подмножеств множества его вершин. Матрица инцидентности такого графа состоит только из нулей и единиц.

Определение 3.1.5.

Граф называется дополнением к графу G, если множество вершин этих двух графов совпадают, а множество ребер дополнения дополняет множество ребер графа G до множества ребер полного графа.

Определение 3.1.6.

Граф называется двудольным, если множество его вершин можно разбить на 2 так, что концы любого ребра лежат в разных блоках этого разбиения. Обозначается как G[X,Y] ((X,Y) – разбиение)

Определение 3.1.7.

Граф называется k-регулярным, если все его вершины имеют степень k. Граф Петерсена – кубическийю

Определение 3.1.8.

- K_n полный граф на n вершинах
- $K_{n,m}$ полный двудольный граф. В одной доле графа n вершин, в другой m. Граф $K_{n,1}$ звезда
- P_n путь длины n.
- C_n цикл длины n.
- W_n колесо (цикл + ещё одна вершина в центре, к которой проведены ребра из всех остальных вершин). n число вершин во внешнем цикле.
- Граф Петерсена. (почти пентаграмма, гуглите)
- $Q_k k$ -кубы. Двудольные k-регулярные графы. Вершины бинарные строки. Ребра проводятся только между теми строками, которые различаются на один символ.

Определение 3.1.9.

Ориентированный граф $D=(V,E,I), I:E\to V\times V.\ e\to (x,y).$ Тогда говорят, что ребро e выходит из x и входит в y.

Для беспетлевых орграфов можно ввести понятие матрицы индидентности. Будет отмечать -1 вершину, из которой выходит ребро и 1 ту, в которую входит.

Будем говорить, что outdeg(x) – число выходящих из вершины ребер, а indeg(x) – входящих.

Утверждение 3.1.2.

$$\sum_{x \in V(D)} indeg(x) = |E(D)| = \sum_{x \in V(D)} outdeg(x)$$

Определение 3.1.10.

Орграф называется простым, если он не содержит петель и кратных упорядоченных ребер.

Определение 3.1.11.

Ориентация графа G – орграф D, полученный из G ориентацией каждого из ребер G.

Определение 3.1.12.

Турнир T_n – орграф, полученный ориентацией ребер полного графа K_n .

Определение 3.1.13.

В неорграфе y смежна с x, если есть ребро $\{x,y\}$

Определение 3.1.14.

В орграфе y смежна с x, если есть ребро (x,y)

Тут нужно рассказать, что есть матрица смежности и список смежности.

Если граф простой, то след и сумма собственных значений его матрицы смежности равны 0.

Onpedenehue 3.1.15. Список смежности – это линейный массив размера n, каждый элемент a_i которого содержит список (мультимножество) вершин, смежных с вершиной i.

Для ориентированного графа напротив каждой вершины с номером i стоят вершины (возмож но, повторяющиеся), в которые идут ребра из i

3.2. Маршруты, пути, циклы в графе. Связные графы и орграфы

Определение 3.2.1.

Маршрутом(walk) в графе G из вершины x_0 в вершину x_k называется чередующаяся последовательность вершин $x_i \in V$ и ребер $e_i \in E$, соединяющих вершины x_i и x_{i+1} . И вершины, и ребра могут повторяться.

$$W := x_0 e_1 x_1 e_2 \dots e_k x_k$$

Количество ребер – длина маршрута.

В случае простого графа достаточно списка вершин, любые соседние 2 из которых соединены ребром.

Вершины x_0 и x_k называют начальной и конечной вершинами, а остальные – внутренними. Также говорят, что x_0 и x_k связаны маршрутом W.

Определение 3.2.2.

Если все ребра в маршруте различны, такой маршрут называется путем(trail). Если ещё и все вершины различны, простым путем(path).

Определение 3.2.3.

Если вершины x и y соединены хотя бы одним путем, они называются связанными.

Определение 3.2.4.

Это отношение – отношение эквивалентности на графе. Вершины делятся по нему на компоненты связности.

Если в графе одна компонента связности, он называется связным.

Определение 3.2.5.

Расстояние между двумя связанными вершинами – длина кратчайшего пути между ними.

Если они не связны, равно бесконечности.

Определение 3.2.6.

Диаметр графа – максимальное расстояние между его вершинами.

Определение 3.2.7.

Экцентриситет $\varepsilon(x), x \in V(G)$ – максимальное расстояние от вершины x до любой другой.

Определение 3.2.8.

Радиус графа – минимальный эксцентриситет. Вершины, для которых он достигается, называются центральными. Множество центральных вершин – центр графа.

Определение 3.2.9.

Замкнутый путь (составной цикл) — путь, в котором $x_0 = x_k$. Изолированная вершина — замкнутый путь длины 0. Простой цикл — замкнутый путь, где вершины не повторяются (кроме конечной)

Циклы длины 3 – треугольники. Графы без треугольников свободны от треугольников.

Определение 3.2.10.

Обхват графа – длина наименьшего цикла в нем. Если циклов нет – бесконечность.

Теорема 3.2.1 (Кёнинга).

Граф двудолен тогда и только тогда, когда в нём отсутствуют циклы нечетной длины.

Доказательство. Если граф двудолен, то чтобы вернуться в исходную долю нужно всегда четное число шагов.

В обратную сторону. Пусть нет циклов нечетной длины. Рассмотрим связный граф из более чем одной вершины. Выберем вершину и разобъем все оставшиеся на 2 множества: вершины, до которых расстояние нечетно X и оставшиеся Y. Докажем, что любые 2 вершины $a,b \in X$ несмежны. Рассмотрим кратчайшие пути P,Q до a,b. Рассмотрим их последнюю общую вершину z. Она делит пути на отрезки до и после: P',Q' и P'',Q''. Длины P' и Q' равны (иначе заменим и получим путь короче). Значит. P и Q одной четности $\Rightarrow P''$ и Q'' одной четности. Значит, вершины несмежны, иначе был бы цикл нечетной длины.

Аналогично локажем	ито в V	все вершины несмежны. Получим две доли.	
лпалогично докамем.	410 b 1	все вершины несмежны. Получим две доли.	

Заметим, что мы получили алгоритм, позволяющий проверять граф на двудольность (нечетные циклы нельзя покрасить с чередованием цветов).

Определение 3.2.11.

Вершины орграфа связанные, если существует путь из одной вершины в другую и наоборот.

Получили отношение эквивалентности, которое разбивает граф на компоненты сильной связности.

Орграф называется сильно связным, если он состоит из единственной компоненты сильной связности и слабо связным, если соответствующий ему неорграф связен.

Лемма. Пусть H_1 и H_2 – различные КСС и есть ребро из H_1 в H_2 , то нет ребра из H_2 в H_1 .

Доказательство. Если бы было, они были бы в одной КСС

По любому орграфу можно построить граф КСС, вершины которого – компоненты сильной связности, а ребра – ребра между вершинами разных компонент.

Теорема 3.2.2. В конденсации циклы отсутствуют (образуют DAG)

Доказательство. Если бы был, вершины на нем лежащие были бы достижимы друг из друга и вошли бы в одну КСС. \Box

 $Onpedenenue\ 3.2.12.$ Линейное упорядочивание вершин ациклического орграфа носит название топологической сортировки его вершин. Топологическая сортировка называется правильной, если после сортировки все ребра направлены слева напра во. Иными словами, вершины орграфа отсортированы правильно в случае, если для любого ребра (x,y) вершина x имеет более ранний номер в линейном порядке по сравнению с номером, присвоенном вершине y.

3.3. Подграф графа G . Основные операции над графами

Определение 3.3.1.

Подграф графа G – граф H, Дли которого $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ и соединяет вершины из H; и любое ребро, соединяющее пару вершин в H должно соединять ту же самую пару вершин в G.

G иногда называют надграфом или суперграфом относительно H

 Γ раф H можно получить из G операциями удаления ребра и вершины. Удаление ребра — из множества ребер удаляется ребро. Удаление вершины — удалить все рёбра из него выходящие. Удалить вершину. Отношение подмнжества сохраняется.

Если мы удаляем только ребра, то получается остовный подграф Если только вершины – индуцированное подмножество оставшихся вершин графа G

Определение 3.3.2.

Остовный 1-регулярный подграф – совершенное паросочетание.

Остовный k-регулярный подграф – k-фактор исходного графа.

Определение 3.3.3.

Ребро в связном графе называется мостом, если получающийся после его удаления граф становится несвязным.

Если граф был несвязным, то мостом называется ребро, после удаления которого количество ребер увеличивается на единицу.

Определение 3.3.4.

Вершина – точка сочленения, если после её удаления количество компонент связности увеличивается.

Утверждение 3.3.1.

Вершина x в графе из не менее 3-х вершин называется точкой сочленения, тогда и только тогда, когда в G существуют отличные от x вершины y и z такие, что x содержится на каждом пути из y в z.

Доказательство. Пусть x — точка сочленения. Пусть между любыми y и z есть путь, не проходящий через x. Но тогда любая пара вершин осталась бы связной.

Пусть есть нужная пара вершин. Тогда удаление x сделает их несвязными. Значит, граф разделится хотя бы на 2 компоненты. Значит, точка сочленения.

Утверждение 3.3.2.

Ребро - мост тогда и только тогда, когда e не лежит ни на одном цикле.

Доказательство. Пусть e- мост. Значит, по определению, при его удалении появится хотя бы одна пара вершин x,y такая, что путь между ними исчезнет. Значит, путь между этими вершинами проходил через это ребро. Пусть ребро соединяло вершины u и v. Тогда путь $x \to y$ проходил как $x \to u, e, v \to y$. Но тогда если бы e лежало на цикле, то вершины u и v оставались бы связными. Значит, и нужные вершины были бы связны т.к. пути простые.

Пусть e — не мост. Тогда его удаление оставляет граф связным. Но тогда концы этого ребра остаются связными. Добавление ребра обратно порождает цикл.

Определение 3.3.5.

G/e получен из G стягиванием ребра e, если граф G/e получается из G удалением ребра e и стягиванием инцидентных e вершин x,y в одну.

Определение 3.3.6.

Объединение графов G и H – граф $F = G \cup H$, множество вершин и ребер которого – объединения соответствующих множеств графов G и H.

Если множества вершин (а значит и ребер) не пересекаются, то мы получаем несвязное объединение таких графов.

Определение 3.3.7.

Пересечение графов G и H – граф $F = G \cup H$, множество вершин и ребер которого – пересечения соответствующих множеств графов G и H.

Определение 3.3.8.

 H_1 и H_2 – остовные подграфы графа G. Тогда их симметрическая разность – это остовный подграф G, ребра которого – это симметрическая разность множеств их ребер.

3.4. Изоморфизм и автоморфизм графов

Количество простых неориентированных графов – $2^{\binom{n}{2}}$ (выбираем любое подмножество ребер).

Число различных простых орграфов – $2^{n(n-1)}$ (Аналогично, просто ребер в 2 раза больше). Многие графы отличаются друг от друга только перенумерацией вершин.

Определение 3.4.1.

2 графа изоморфны друг другу, если существует биекция $\varphi:V(G_1)\to V(G_2)$, которая сохраняет отношение смежности. То есть если 2 вершины были соединены ребром, то их образы тоже должны быть соединены ребром и наоборот(в неорграфе)

Изоморфизм вводит отношение эквивалентности на множестве всех простых неорграфов. Графы разбиваются на классы. Каждый такой класс называется непомеченным графом.

А теперь для неориентированных мультиграфов.

Определение 3.4.2.

Графы $G_1=(V(G_1),E(G_1),I(G_1))$ и $G_2=(V(G_2),E(G_2),I(G_2))$ изоморфны, если существует пара взаимно-однозначных отображений $(\varphi,\eta): \varphi:V(G_1)\to V(G_2)$ и $\eta:E(G_1)\to E(G_2)$, сохраняющих отношение смежности в графах G_1 и G_2 . Иначе говоря, если отображение $I(G_1)$ сопоставляет ребру e пару (x,y), то в графе G_2 сопоставит ребру $\eta(e)$ пару вершин $(\varphi(x),\varphi(y))$ и наоборот.

Интересно также бывает по-разному нумеровать вершины на одном и том же графе.

Определение 3.4.3.

Перестановка вершин, при которой граф как помеченный объект переходит сам в себя называется автоморфизмом графа.

Более формально, биекция $\varphi:V(G)\to V(G)$ множества V(G) вершин простого графа G в себя называется автоморфизмом, если она сохраняет отношение смежности в графе G.

Автоморфизм и изоморфизм отличаются довольно сильно. При автоморфизме граф переходит сам в себя(список смежности не меняется). При изоморфизме же может получиться какой угодно попросту изоморфный исходному граф (граф, который можно перевести в в исходный отображением).

Заметим, что автоморфизмы образуют группу. Их композиция – автоморфизм, в ней есть

единица -id, обратное к автоморфизму отображение - автоморфизм.

Aut(G) – группа автоморфизмов помеченного графа G

Утверждение 3.4.1.

Количество N различных помеченных графов, получаемых из непомеченного графа разметкой его вершин расчитывается по формуле $\frac{n!}{|Aut(G_1)|}$

Доказательство. Способов много. Среди прочего – предположить, что размер группы автоморфизмов равен какому-то числу и разбить все перестановки на классы. Вспомнить теорию групп, орбиты и стабилизаторы. Заняться конструктивом.

Всё это почти без воды и подробно есть на страницах 71-73. Переписывать я это не буду.

Определение 3.4.4.

Граф называется ассиметричным, если его группа автоморфизмов тривиальна.

Чем выше n, тем большее число графов ассиметрично. Можно оценить это количество как $\sim \frac{2^{\binom{n}{2}}}{\cdot}$

3.5. Основные свойства деревьев

Определение 3.5.1.

Деревом называется простой связный граф без циклов.

Произвольный граф без циклов называется лесом.

Определение 3.5.2.

Вершина графа G, имеющая единичную степень, называется листом.

Лемма.

У любого дерева T с более чем одной вершиной имеется как минимум 2 листа.

Доказательство. Рассмотрим произвольный простой путь максимальной длины. Такой путь всегда существует и его длина равна диаметру дерева. Тогда его крайние вершины – листья. Пусть нет. Тогда степень вершины x_k , не теряя общности, хотя бы 2. Тогда посмотрим на вторую вершину (первая наш предок на пути). Если она уже лежала на пути, то мы нашли цикл и это не дерево. Если ещё нет, то путь был не самым длинным и его можно продлить.

Теорема 3.5.1.

В дереве, построенном на n вершинах, имеется (n-1) ребро.

Доказательство. Индукция. На 1 вершине очевидно. Пусть верно для деревьев из n вершин. Переход:

По доказанной выше лемме у дерева есть хотя бы 1 лист. Удалим его. Результат связен. Циклы не появились. Значит, оставшийся граф — дерево. По индукции, в нём (n-1) ребро. Значит, у исходного дерева ровно n ребер. \Box

Теорема 3.5.2.

Любой простой связный граф на n вершинах и (n-1) ребре – дерево.

Доказательство. Пусть не так. Тогда есть цикл. Знаем, что любое ребро, лежащее на цикле, — не мост. Удалим ребро на цикле. Повторим до тех пор, пока циклы не пропадут. В конце концов получим дерево на n вершинах. В нем n-1 ребро. Значит, мы ничего не удаляли, значит, циклов не было.

Определение 3.5.3.

Всякий связный граф на n вершинах имеет как минимум (n-1) ребро.

Доказательство. Рассмотрим произвольный связный граф. Если это не дерево, то там есть цикл. Удалим ребро на цикле, связность не потеряется. Пока не получим граф без циклов, повторим. Граф без циклов – дерево, в нем ровно n-1 ребро. Значит, в исходном графе тоже как минимум n-1 ребро.

Научимся находить остовное дерево: (dfs). Там можно хранить предка, время захода-выхода, красить ребра остова и вершины.

Утверждение 3.5.3.

Связный граф – дерево тогда и только тогда, когда любое ребро его является мостом.

Доказательство. По определению, циклы отсутствуют. Значит, ни одно ребро на цикле не лежит. Значит, любое ребро – мост. И наоборот. Любое – мост, значит, циклов нет.

Утверждение 3.5.4.

Граф дерево тогда и только тогда, когда для любых двух его вершин существует единственный простой путь между ними.

Доказательство. Пусть для каждой пары есть единственный путь. Тогда граф связен и там нет циклов. Если бы был, между любыми двумя вершинами на цикле существовало бы хотя бы 2 пути.

Обратно. Граф — дерево и пусть в нем существуют 2 разлиных пути P, Q, соединяющие 2 вершины x и y. Тогда $P\Delta Q$ состоит из одного или нескольких циклов. Противоречие.

Следствие.

Пусть T – остовное дерево связного графа G, e – ребро, не принадлежащее T. Тогда T + e содержит единственный цикл и он проходит через e.

Доказательство. Любой получившийся цикл должен содержать e. Иначе было бы не дерево. Более того, C – цикл тогда и только тогда, когда C – e есть xy-путь в исходном графе. В дереве такой путь был единственнен. Значит, получили единственный цикл.

Утверждение 3.5.5.

Пусть есть 2 различных остовных дерева T и T' графа G. У первого есть ребро $e \notin T'$, тогда найдется ребро $e' \notin T$ такое, что T - e + e' – остовное дерево.

Доказательство. Удаление ребра e разбивает множество вершин на 2 связные компоненты. В дереве T' существует единственный путь между концами ребра e. Такой путь обязан иметь ребро e' из одного множества во второе. Вот его и добавим. Т.к. e не лежало в T, то $e \neq e'$. Получившийся граф связен и содержит n-1 ребро, а значит, является деревом.

Определение 3.5.4.

Корневое дерево – дерево с выделенной вершиной, называемой корнем. Корневой лес – лес, где каждая компонента является корневым деревом.

Определение 3.5.5.

Уровень вершины в дереве – расстояние от этой вершины до корня

Определение 3.5.6.

Высота дерева – длина наибольшего пути от корня до вершины дерева. Более того, эта вершина будет листом.

Определение 3.5.7.

В ориентированном дереве все ребра проориентированы от родителя к сыну (отношение по ребру(!)). Источник – корень. Стоки – листья.

Отношение на путях: предок-потомок

Определение 3.5.8.

Дерево в котором наибольшая исходящая степень равна m называется m-арным.

Определение ч.у.п. : рефлексивность, транзитивность, антисимметричность. Отношение предокпотомок – ч.у.п. на дереве.

Определение 3.5.9.

Остовное дерево называется нормальным, если концевые вершины любого ребра, не принадлежащего дереву, сравнимы относительно частичного порядка, введенного на множестве вершин корневого дерева.

В результате работы dfs мы получаем нормальное корневое дерево.

Теперь хотим получать остовное дерево, расстояние до всех вершин от корня в котором кратчайшее. dfs уже не подойдет. Зато bfs – вполне. (слова про bfs)

Важно понимать, что при обходе графа алгоритмом bfs мы разделяем вершины на слои по расстоянию до корня.

3.6. Перечисление деревьев. Формула Cayley

Теорема 3.6.1 (Кэли).

Количество раличных помеченных деревьев на n вершинах равно n^{n-2}

Доказательство. Рассмотрим дерево, вершины которого помечены числами от 1 до n. Сопоставим этому дереву код Прюфера. Каждый раз будем делать следующее: из всех листов выбирать вершину с минимальным номером, и удалять её, выписав номер её соседа. И так, пока вершин не останется 2. Получим некоторую последовательность из n-2 чисел. Заметим, что если вместе с соседом мы будем выписывать номер самой вершины, то мы получим список ребер без одного. Оставшееся ребро будет восстанавливаться как максимальная вершина (её мы никогда не удалим) и оставшаяся неудаленная вершина. Получившийся список однозначно задаё дерево.

Тогда всё, что нам осталось — показать, что по коду Прюфера можно однозначно восстановить этот список ребер. Попробуем восстановить первый лист. Заметим, что листья с точки зрения кода Прюфера — это те вершины, которых нет в списке. Тогда будем каждый раз брать минимальное из таких чисел и записывать его как ребро. Теперь зачеркнем первых символ кода Прюфера и начнем сначала, выкинув из множесва вершину, найденную на прошлом ходу (т.к. нельзя убрать одну и ту же вершину более одного раза). Таким образом мы восстановим n-2 ребра. А как восстанавливать последнее уже было сказано. Таким образом, каждому коду Прюфера мы сопоставили дерево, а каждому дереву — код Прюфера. Получили n^{n-2} различных последовательностей.

3.7. Подсчет остовных деревьев в графе. Матричная теоре- ма о деревьях

Теорему Кэли можно интерпретировать в том числе как количество всех остовных деревьев в полном графе.

Утверждение 3.7.1.

t(G) – количество всех остовных подграфов G.

Пусть e – ребро G, не петля. Тогда t(G) = t(G-e) + t(G/e), где в одном случае ребро удаляют, а во втором стягивают.

Доказательство. Разобъем множество остовов на 2. Те, которые содержат ребро e и те, которые нет. Они очевидно не пересекаются. Во втором случае просто удалим ребро и посчитаем. В первом, рассмотрим любое дерево T, содержащее это реро. Пусть мы стянули его. Тогда мы уменьшим число вершин в графе на 1. Граф при этом останется связным. Значит, T/e всё ещё дерево, остовное дерево графа G. Более того, никакие 2 различных дерева, содержащие e не сольются в одно. Обратно, любое остовное дерево в графе G/e превращается в остовное, содержащее e, расщеплением вершины в ребро.

При выполнении алгоритма нужно удалять петли, мешают. Мультиребра, при этом, работают правильно.

Определение 3.7.1. Рассмотрим связный неорграф из n вершин без петель. Мы знаем, что матрица смежности M_a такого графа симметрична, на диагонали нули. Возьмем теперь матрицу M_d размером $n \times n$, в которой диагональные элементы равны степеням соответствующих вершин в графе, а остальные элементы равны 0. Возьмем $L = M_d - M_a$. Назовем эту матрицу матрицей Кирхгофа

Теорема 3.7.2 (Matrix tree theorem). Пусть x_k – произвольная вершина графа G, а L^* – матрица, полученная из матрицы Кирхгофа удалением k-й строки и k-го столбца, отвечающих вершине. Тогда количество остовных деревьев графа G равно $t(G) = det(L^*)$.

Доказательство. Перейдем от неориентированной матрицы к некоторой ориентированной. Тогда справедлива лемма:

Лемма. Пусть есть орграф D, полученный из G произвольной ориентацией ребер, а M_i – матрица инцидентности орграфа D. Тогда $L = M_i \cdot M_i^T$

Доказательство. В матрице M_i $m_{i,j} = 1$, если ребро e_j выходит из вершины i и -1, если входит. Тогда $l_{i,j}$ — скалярное произведение i и j строк матрицы M_i . Если $i \neq j$, то это произведение даст нам столько -1, сколько ребер имеется между этими вершинами. Иначе имеем количество ребер выходящих из i. Построили в точности матрицу L.

Следствие. Матрица L^* , полученная из матрицы Кирхгофа L удалением k-й строки и k-го столбца равна. $L^* = M_i^*(M_i^*)^T$.

Продолжение следует...

Автор: Швецова Анна